Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Environ Sci Technol ; 58(15): 6647-6658, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563431

RESUMO

The biodegradation of polypropylene (PP), a highly persistent nonhydrolyzable polymer, by Tenebrio molitor has been confirmed using commercial PP microplastics (MPs) (Mn 26.59 and Mw 187.12 kDa). This confirmation was based on the reduction of the PP mass, change in molecular weight (MW), and a positive Δδ13C in the residual PP. A MW-dependent biodegradation mechanism was investigated using five high-purity PP MPs, classified into low (0.83 and 6.20 kDa), medium (50.40 and 108.0 kDa), and high (575.0 kDa) MW categories to access the impact of MW on the depolymerization pattern and associated gene expression of gut bacteria and the larval host. The larvae can depolymerize/biodegrade PP polymers with high MW although the consumption rate and weight losses increased, and survival rates declined with increasing PP MW. This pattern is similar to observations with polystyrene (PS) and polyethylene (PE), i.e., both Mn and Mw decreased after being fed low MW PP, while Mn and/or Mw increased after high MW PP was fed. The gut microbiota exhibited specific bacteria associations, such as Kluyvera sp. and Pediococcus sp. for high MW PP degradation, Acinetobacter sp. for medium MW PP, and Bacillus sp. alongside three other bacteria for low MW PP metabolism. In the host transcriptome, digestive enzymes and plastic degradation-related bacterial enzymes were up-regulated after feeding on PP depending on different MWs. The T. molitor host exhibited both defensive function and degradation capability during the biodegradation of plastics, with high MW PP showing a relatively negative impact on the larvae.


Assuntos
Microbiota , Tenebrio , Animais , Tenebrio/metabolismo , Tenebrio/microbiologia , Plásticos , Polipropilenos/metabolismo , Microplásticos , Peso Molecular , Poliestirenos , Larva/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental
2.
Biomater Adv ; 157: 213714, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096647

RESUMO

Current treatment approaches in clinics to treat the infectious lesions have partial success thus demanding the need for development of advanced treatment modalities. In this study we fabricated an organic-inorganic composite of polypropylene fumarate (PPF) and nanohydroxyapatite (nHAP) by photo-crosslinking as a carrier of two clinically used antibiotics, ciprofloxacin (CIP) and rifampicin (RFP) for the treatment of bone infections. Carboxy terminal-PPF was first synthesized by cis-trans isomerization of maleic anhydride which was then photo-crosslinked using diethylfumarate (DEF) as crosslinker and bis-acylphosphine oxide (BAPO) as photo-initiator under UV lights (P). A composite of PPF and nHAP was fabricated by incorporating 40 % of nHAP in the polymeric matrix of PPF (PH) which was then characterized for different physicochemical parameters. CIP was added along with nHAP to fabricated CIPloaded composite scaffolds (PHC) which was then coated with RFP to synthesize RFP coated CIP-loaded scaffolds (PHCR). It was observed that there was a temporal separation in the in vitro release of two antibiotics after coating PHC with RFP with 80.48 ± 0.40 % release of CIP from PHC and 62.43 ± 0.21 % release of CIP from PHCR for a period of 60 days. Moreover, in vitro protein adsorption was also found to be maximum in PHCR (154.95 ± 0.07 µg/mL) as observed in PHC (75.42 ± 0.06 µg/mL), PH (24.47 ± 0.08 µg/mL) and P alone (4.47 ± 0.02 µg/mL). The scaffolds were also evaluated using in vivo infection model to assess their capacity in reducing the bacterial burden at the infection site. The outcome of this study suggests that RFP coated CIP-loaded PPF composite scaffolds could reduce bacterial burden and simultaneously augment bone healing during infection related fractures.


Assuntos
Antibacterianos , Polipropilenos , Pirenos , Polipropilenos/química , Polipropilenos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fumaratos/química , Fumaratos/metabolismo , Polímeros
3.
Appl Environ Microbiol ; 89(12): e0136523, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37982621

RESUMO

IMPORTANCE: PP biodegradation has not been clearly shown (it has been uncertain whether the PP structure is actually biodegraded or not). This is the first report on the obvious biodegradation of PP. At the same time, this study shows that Alcanivorax bacteria could be major degraders of PP in mesopelagic environments. Moreover, PP biodegradation has been investigated by using solid PP as the sole carbon source. However, this study shows that PP would not be used as a sole carbon and energy source. Our data thus provide very important and key knowledge for PP bioremediation.


Assuntos
Alcanivoraceae , Polipropilenos , Polipropilenos/metabolismo , Alcanivoraceae/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Carbono/metabolismo , Plásticos/metabolismo
4.
Microbiol Res ; 277: 127507, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37793281

RESUMO

The urgent need for better disposal and recycling of plastics has motivated a search for microbes with the ability to degrade synthetic polymers. While microbes capable of metabolizing polyurethane and polyethylene terephthalate have been discovered and even leveraged in enzymatic recycling approaches, microbial degradation of additive-free polypropylene (PP) remains elusive. Here we report the isolation and characterization of two fungal strains with the potential to degrade pure PP. Twenty-seven fungal strains, many isolated from hydrocarbon contaminated sites, were screened for degradation of commercially used textile plastic. Of the candidate strains, two identified as Coniochaeta hoffmannii and Pleurostoma richardsiae were found to colonize the plastic fibers using scanning electron microscopy (SEM). Further experiments probing degradation of pure PP films were performed using C. hoffmannii and P. richardsiae and analyzed using SEM, Raman spectroscopy and Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR). The results showed that the selected fungi were active against pure PP, with distinct differences in the bonds targeted and the degree to which each was altered. Whole genome and transcriptome sequencing was conducted for both strains and the abundance of carbohydrate active enzymes, GC content, and codon usage bias were analyzed in predicted proteomes for each. Enzymatic assays were conducted to assess each strain's ability to degrade naturally occurring compounds as well as synthetic polymers. These investigations revealed potential adaptations to hydrocarbon-rich environments and provide a foundation for further investigation of PP degrading activity in C. hoffmannii and P. richardsiae.


Assuntos
Ascomicetos , Plásticos , Plásticos/química , Plásticos/metabolismo , Polipropilenos/metabolismo , Ascomicetos/metabolismo , Fungos/metabolismo , Biodegradação Ambiental
5.
Artigo em Inglês | MEDLINE | ID: mdl-37561014

RESUMO

A Gram-stain-negative, facultatively anaerobic, non-motile, rod-shaped bacterial strain, designated HL-MP18T, was isolated from Arctic seawater after a prolonged incubation employing polypropylene as the sole carbon source. Phylogenetic analyses of the 16S rRNA gene sequence revealed that strain HL-MP18T was affiliated to the genus Roseovarius with close relatives Roseovarius carneus LXJ103T (96.8 %) and Roseovarius litorisediminis KCTC 32327T (96.5 %). The complete genome sequence of strain HL-MP18T comprised a circular chromosome of 3.86 Mbp and two circular plasmids of 0.17 and 0.24 Mbp. Genomic comparisons based on average nucleotide identity and digital DNA-DNA hybridization showed that strain HL-MP18T was consistently discriminated from its closely related taxa in the genus Roseovarius. Strain HL-MP18T showed optimal growth at 25 °C, pH 7.0 and 2.5 % (w/v) sea salts. The major cellular fatty acids were C18 : 1 ω6c and/or C18 : 1 ω7c (49.6 %), C19 : 0 cyclo ω8c (13.5 %), and C16 : 0 (12.8 %). The major respiratory quinone was ubiquinone-10. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, an unidentified aminolipid and three unidentified lipids. The genomic DNA G+C content of the strain was 59.2 mol%. The phylogenetic, genomic, phenotypic and chemotaxonomic results indicate that strain HL-MP18T is distinguishable from the recognized species of the genus Roseovarius. Therefore, we propose that strain HL-MP18T represents a novel species belonging to the genus Roseovarius, for which the name Roseovarius pelagicus sp. nov. is proposed. The type strain is HL-MP18T (=KCCM 90405T=JCM 35639T).


Assuntos
Bactérias Anaeróbias Gram-Negativas , Polipropilenos , Rhodobacteraceae , Regiões Árticas , Rhodobacteraceae/classificação , Rhodobacteraceae/enzimologia , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Genoma Bacteriano/genética , Bactérias Anaeróbias Gram-Negativas/classificação , Bactérias Anaeróbias Gram-Negativas/genética , Bactérias Anaeróbias Gram-Negativas/isolamento & purificação , Polipropilenos/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
6.
Environ Toxicol Pharmacol ; 101: 104209, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399851

RESUMO

Microplastic enlisted as a contaminant of emerging concerns in polluted environments interact with "traditional" contaminants such as metals, causing, among others, their increased accumulation in the body. Harmful effects depend on the exposed animals' possible preadaptation and/or cross-tolerance. The project aimed to assess the role of this phenomenon in the limited toxicity of polypropylene fibers (PPf) in 0%, 0.02%, 0.06, 0.18%, 0.54%, and 1.6% of Cd-supplemented food of larvae of Spodoptera exigua multigenerationally selected to cadmium tolerance. The activity of 20 digestive enzymes (API-ZYM test), defensins, and heat shock proteins, HSP70 levels in the exposed groups were used as biomarkers. PPfs caused the increase of Cd accumulation in the body, while intake of polypropylene microfibers did not change the biomarker levels. Moreover, multigenerational Cd pre-exposure, due to increased tolerance of Cd and, possibly, cross-tolerance, prepares the insects for an additional stressor (PPf) alone and in interaction with cadmium.


Assuntos
Cádmio , Polipropilenos , Animais , Cádmio/toxicidade , Cádmio/metabolismo , Polipropilenos/metabolismo , Plásticos , Proteínas de Choque Térmico , Spodoptera , Biomarcadores/metabolismo
7.
Mikrobiyol Bul ; 57(3): 432-443, 2023 Jul.
Artigo em Turco | MEDLINE | ID: mdl-37462306

RESUMO

The Malassezia yeast species colonize on the skin immediately after birth and could be found on the healthy skin flora for life. Although they are more frequently involved in the etiology of common skin infections in the community, particularly Malassezia furfur could cause life-threatening infections such as fungemia. Detection of biofilm during the colonization of these yeasts on the skin is an important criterion for its virulence. Since they are lipophilic yeasts, commonly used biofilm detection methods are not applicable to the Malassezia strains. The aim of the study was to describe the growth and measurement of M.furfur isolates on a polypropylene membrane to demonstrate their biofilm-forming capacities. Twenty-seven M.furfur strains colonized in the newborns were included in the study. Basically, sterile polypropylene membranes were placed on different polysorbates (tween 20, 40, and 80) which were spread on Sabouraud dextrose agar. Ten µl saline suspension of M.furfur was dropped on the polypropylene membrane and incubated in standard growth conditions for three days. Later, the visible colony was removed gently by washing with running water and the biofilm structure formed on the membrane was stained with safranin. The stained biofilm was photographed. Performing image analysis, the values obtained against background activity were digitized according to the specified protocol. Moreover, XTT reduction test was performed and the measured metabolic activity results were compared with the safranin-stained biofilm data. The safranin hydrolysis of the strains was measured spectrometrically. Twenty-five (92.6%) of the strains included in the study were stained with safranin, which indicated the presence of biofilm on the polypropylene membrane. The strains grown with tween 20 and tween 80 formed a higher biofilm layer density than those supplied with tween 40. Isolates with low and high biofilm-forming capacity were clearly separated by tween 20 (p< 0.05). XTT activity was detected in 26 (96.3%) isolates. No correlation was found between biofilm density obtained by the described method and XTT reduction. It was observed that hydrolysis of safranin did not affect the biofilm evaluation method. In this study, it was shown that as a result of sufficient diffusion through hydrophobic membranes, polysorbate-based growth factors could maintain measurement of the biofilm layer formed by lipophilic M.furfur strains. The best grouping properties for M.furfur were obtained with tween 20 which could determine low and high level of biofilm formation. Image analysis was used with high performance for this method. As conclusion, the utilization of different hydrophobic membranes and dyes would lead to the development of new techniques for the application in other lipophilic yeasts.


Assuntos
Malassezia , Humanos , Recém-Nascido , Polissorbatos/metabolismo , Polipropilenos/metabolismo , Pele , Biofilmes
8.
Biotechnol Appl Biochem ; 70(6): 1915-1924, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37417692

RESUMO

Health and environmental consequences are unavoidable when it comes to management of hospital waste (HW) disposables. In order to eradicate the HW, this study isolated a novel fungus SPF21 from a hospital dumping yard to degrade Polypropylene (PP). We measured the attributes of PP inoculated with fungus using mass loss, Fourier trans-form infrared (FTIR), contact angle (CA), and scanning electron microscopy (SEM). The weight of PP exposed to SPF21 was reduced by 25% in 90 days. The SEM images reveal that there are pores all over the sample surface; they alsocaused voids during the biodegradation of PP. FTIR analysis indicates that the spectra of treated mask pieces show the absence of peak at 1746 cm-1 and the appearance of a new peak at 1643 cm-1 . A period of 90-day exposure to the fungal isolate SPF21 reduced the CA of PP by 44.8% when compared to the nonexposed PP samples, suggesting that the surface of PP turned more hydrophilic after exposure. Moreover, our study on PP degradation by the fungus Ascotricha sinuosa SPF21 appears to be promising from the perspective of environmental, health, and economic hazards. Our results indicate that biodegradation greatly facilitates fungus deposition and changes PP film morphology and hydrophilicity.


Assuntos
Fungos , Polipropilenos , Polipropilenos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Biodegradação Ambiental , Fungos/metabolismo
9.
Aquat Toxicol ; 259: 106540, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062245

RESUMO

The occurrence of accumulation of microplastics in humans and wildlife has become a serious concern on a global scale, especially in the last decade. Although there are many studies on microplastics, their biological effects and toxicity on freshwater fish have not been fully revealed. In order to evaluate the potential toxic effects of PP (polypropylene) microplastics in freshwater fish, we performed 1-day, 2-day, 3-day, 4-day, 5-day, 6-day, and 7-day microplastic exposure to different concentrations of the microplastics through water and diet on Cyprinus carpio. Fish samples were divided into 3 groups; Group-A with different PP microplastic concentrations in their water (ALow:1.0 g/L and AHigh:2.5 g/L), Group-B with different PP microplastic concentrations in their diet (BLow:100 mg/g and BHigh:250 mg/g), and Group-C (Control group) free of PP microplastics in their diet and water. The results showed that although microplastics did not cause death in C. carpio, they caused oxidative stress in comparing the MP exposed groups to the control groups. When indices of oxidative stress of fish individuals in all treatment groups were compared with the control group, it was determined that MDA (malondialdehyde) and GSH (glutathione) levels increased, while TPC (total protein content) and CAT (catalase) levels decreased depending on the concentrations and exposure times. Significant differences were observed between the control and treatment groups in the indices of oxidative stress (P<0.05). This study provided basic toxicological data to elucidate and quantify the effects of PP microplastics on freshwater fish. In addition, this study is the first study to indicate that microplastic exposure of carp via diet and water causes oxidative stress in gill tissues and causes changes in CAT, MDA, GSH, and TPC levels. The findings also provide useful reference data for improving knowledge of the effects of microplastics on organisms in freshwater systems.


Assuntos
Carpas , Poluentes Químicos da Água , Humanos , Animais , Microplásticos/metabolismo , Antioxidantes/metabolismo , Plásticos , Polipropilenos/metabolismo , Polipropilenos/farmacologia , Carpas/metabolismo , Água/farmacologia , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Glutationa/metabolismo , Dieta
10.
Microbiol Res ; 267: 127251, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423546

RESUMO

Microorganisms degrade microplastics, but their potential is still not fully exploited, e.g., due to inadequate selection of microorganisms. We developed an effective selection method of microorganisms capable of polyethylene (PE) and polypropylene (PP) degradation and assessed the scale of polymer degradation by microbial populations. We isolated seven bacterial strains (three Priestia megaterium strains, Klebsiella pneumoniae, Pseudomonas fluorescens, Enterobacter ludwigii, Chryseobacterium sp.) and seven fungal strains (four Fusarium spp., two Lecanicillium spp. and Trichoderma sp.) with PE degradation potential, as well as seven bacterial strains (five Serratia marcescens and two Enterobacter spp.) and six fungal strains (four Aspergillus spp., Fusarium oxysporum and Penicillium granulatum) with PP degradation ability. Scanning electron microscopy (SEM) analysis confirmed the presence of a biofilm and revealed surface changes in both PE and PP pellets, but the greatest changes (microcracks and corrugations) were observed for PP incubated with bacteria. Fourier transform infrared (FTIR) spectroscopy confirmed the structural changes on the studied polymer surfaces. In conclusion, the isolation of plastic-degrading bacteria and fungi from waste landfills represents an effective strategy for the collection of microorganisms with high potential for PE and PP degradation. The bacteria and fungi revealed better potential for PP degradation and PE degradation, respectively.


Assuntos
Polietileno , Polipropilenos , Polietileno/química , Polietileno/metabolismo , Polipropilenos/metabolismo , Plásticos/metabolismo , Biodegradação Ambiental , Fungos/metabolismo
11.
Environ Res ; 212(Pt C): 113370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35504343

RESUMO

One of the most common environmental pollutant in aquatic ecosystems are polypropylene microplastics and their impacts on aquatic organisms are still scarce. The study aimed to prepare polypropylene microplastics using organic solvent (spherical and 11.86-44.62 µm) and then test their toxicity on the freshwater benthic mollusc grazer Pomaceae paludosa. The present study investigated chronic (28 days) exposure of polypropylene microplastics via dietary supplements (250 mg kg-1, 500 mg kg-1 & 750 mg kg-1) in P. paludosa, and the toxic effect was evaluated in digestive gland tissue. The FTIR results revealed no change in polypropylene microplastics during ingestion or after egestion. On the other hand, Ingestion causes accumulation in their bodies and disrupts redox homeostasis. Meanwhile, alteration occurs in oxidative stress-related biomarkers such as increased reactive oxygen species level (ROS), impaired the biochemical parameters of antioxidant system catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and glutathione - S- transferase (GST), deterioration of oxidative stress effects in lipid peroxidation (LPO) and carbonyl protein (CP) and changed the digestive enzymes such as amylase, pepsin, esterase and alkaline phosphatase that are measured in hepatopancreas tissue. The histology results revealed that ingesting these microplastics caused severe damage to the digestive gland cells. According to the findings, ingestion of polypropylene microplastics in benthic freshwater mollusc causes more serious harm and impacts energy acquisition. This finding represents the ecological risk of polypropylene microplastic pollution in the freshwater ecosystem.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Ecossistema , Água Doce , Glutationa Transferase/metabolismo , Moluscos/metabolismo , Estresse Oxidativo , Plásticos/metabolismo , Plásticos/toxicidade , Polipropilenos/metabolismo , Polipropilenos/toxicidade , Poluentes Químicos da Água/química
12.
Bull Exp Biol Med ; 170(1): 88-92, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33231798

RESUMO

We compared in vitro degradation and physical properties of polypropylene and a biodegradable polymer synthesized by electrospinning and consisting of 65% polycaprolactone and 35% polytrimethylene carbonate as a possible alternative material for use in surgery for pelvic floor muscle failure. Samples of the studied polymers were implanted to 10 male Wistar rats into the interfascial space on the back (polypropylene on the right side and biodegradable polymer on the left side). The synthesized biopolymer was characterized by elongation and tear resistance, similar to those of polypropylene. During the period from the third to the sixth month after implantation, the area of fibrosis around individual polypropylene and biopolymer fibers increased by 16.7 and 107.9%, respectively, while remaining reduced compared to polypropylene. The total fibrosis area in 6 months after implantation of polypropylene and biopolymer samples significantly increased by 18% (p=0.0097) and 48% (p=0.05), respectively, i.e. fibrosing processes were more intense in case of biopolymer. Induction of more pronounced fibrosis can be an advantage of the synthesized biopolymer when choosing the material for fabrication of implants and their use for correction of incompetence of the ligamentous and muscular apparatus.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/metabolismo , Dioxanos/metabolismo , Poliésteres/metabolismo , Polímeros/metabolismo , Polipropilenos/metabolismo , Telas Cirúrgicas , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Dioxanos/síntese química , Dioxanos/farmacologia , Fáscia/efeitos dos fármacos , Fáscia/ultraestrutura , Fibrose , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Teste de Materiais , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/cirurgia , Músculo Esquelético/ultraestrutura , Poliésteres/síntese química , Poliésteres/farmacologia , Polímeros/síntese química , Polímeros/farmacologia , Polipropilenos/síntese química , Polipropilenos/farmacologia , Ratos , Ratos Wistar
13.
Hernia ; 24(6): 1175-1189, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33030647

RESUMO

BACKGROUND: Mesh implants are widely used to reinforce the abdominal wall, although the inevitable inflammatory foreign body reaction (FBR) at the interface leads to complications. Macrophages are suspected to regulate the subsequent scar formation, but it is still unclear whether adequate fibrous scar formation with collagen deposition depends mainly on the presence of M1 or M2 macrophages. METHODS: This study investigated the FBR to seven human polypropylene meshes, which were removed after a median incorporation time of 1 year due to the primary complaint of recurrence. Using immunofluorescence, the FBR was examined in six regional zones with increasing distance from the mesh fibers up to 350 µm, based on the cell densities, macrophage M1 (CD86) and M2 (CD163, CD206) phenotypes, deposition of collagen-I and -III, and expression of matrix metalloproteinase-2 (MMP-2) and -8 as indicator of collagen degradation. RESULTS: All mesh-tissue complexes demonstrated a decrease in cell density and macrophages with distance to the mesh fibers. Overall, about 60% of the macrophages presented an M2 phenotype, whereas only 6% an M1 phenotype. Over 70% of macrophages showed co-expression with collagen-I or -III and over 50% with MMP-2. CONCLUSIONS: The chronic FBR to polypropylene meshes is associated with an M2 macrophage response, which is accompanied by collagen deposition and MMP-2 expression. These findings challenge the idea that mainly M1 macrophages are related to inflammation and highlights that iatrogenic attempts to polarize these cells towards the M2 phenotype may not be a solution to ameliorate the long-term foreign body reaction.


Assuntos
Parede Abdominal/cirurgia , Macrófagos/metabolismo , Microscopia de Fluorescência/métodos , Polipropilenos/metabolismo , Telas Cirúrgicas/normas , Animais , Humanos
14.
Hernia ; 24(6): 1283-1291, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725294

RESUMO

PURPOSE: Alteration in fascial tissue collagen composition represents a key factor in hernia etiology and recurrence. Both resorbable and non-resorbable meshes for hernia repair are currently used in the surgical setting. However, no study has investigated so far the role of different implant materials on collagen deposition and tissue remodeling in human fascia. The aim of the present study was to develop a novel ex vivo model of human soft tissue repair mesh implant, and to test its suitability to investigate the effects of different materials on tissue remodeling and collagen composition. METHODS: Resorbable poly-4-hydroxybutyrate and non-resorbable polypropylene mesh implants were embedded in human abdominal fascia samples, mimicking common surgical procedures. Calcein-AM/Propidium Iodide vital staining was used to assess tissue vitality. Tissue morphology was evaluated using Mallory trichrome and hematoxylin and eosin staining. Collagen type I and III expression was determined through immunostaining semi-quantification by color deconvolution. All analyses were performed after 54 days of culture. RESULTS: The established ex vivo model showed good viability at 54 days of culture, confirming both culture method feasibility and implants biocompatibility. Both mesh implants induced a disorganization of collagen fibers pattern. A statistically significantly higher collagen I/III ratio was detected in fascial tissue samples cultured with resorbable implants compared to either non-resorbable implants or meshes-free controls. CONCLUSION: We developed a novel ex vivo model and provided evidence that resorbable polyhydroxybutyrate meshes display better biomechanical properties suitable for proper restoration in surgical hernia repair.


Assuntos
Colágeno/metabolismo , Fáscia/fisiopatologia , Polipropilenos/metabolismo , Telas Cirúrgicas/normas , Idoso , Idoso de 80 Anos ou mais , Feminino , Herniorrafia , Humanos , Masculino , Projetos Piloto
15.
Biopolymers ; 111(9): e23386, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32544981

RESUMO

Cationic dendrimers are considered one of the best drug transporters in the body. However, in order to improve their biocompatibility, modification of them is required to reduce toxicity. In this way, many dendrimers may lose their original properties, for example, anticancer. To improve biocompatibility of dendrimers, it is possible to complex them with albumin, as is done very often in drug delivery. However, the interaction of dendrimers with albumin can lead to protein structure disruption or no complexation at all. Therefore, the investigation of the interaction between cationic poly-(propylene imine) dendrimers and polyethylene glycol (PEG)-albumin by fluorescence, circular dichroism, small angle X-ray scattering (SAXS), and transmission electron microscopy was carried out. Results show that cationic dendrimers bind to PEGylated albumin at PEG and albumin surfaces. The obtained results for 5k-PEG indicate a preferential binding of the dendrimers to PEG. For 20k-PEG binding of dendrimers to PEG and protein could induce a collapse of the PEG chain onto the protein surface. This opens up new possibilities to the use of PEGylated albumin as a platform to carry dendrimers without changing the albumin structure and improve the pharmacokinetic properties of dendrimers without further modification.


Assuntos
Dendrímeros/química , Nanopartículas/química , Polietilenoglicóis/química , Polipropilenos/química , Soroalbumina Bovina/química , Animais , Transporte Biológico , Bovinos , Dendrímeros/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/metabolismo , Polietilenoglicóis/metabolismo , Polipropilenos/metabolismo , Espalhamento a Baixo Ângulo , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Difração de Raios X
16.
Appl Microbiol Biotechnol ; 103(18): 7729-7740, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31367856

RESUMO

Plastic production and waste generation will continue to rise as nations worldwide grow economically. In this work, we detail a pyrolysis-based bioconversion process for polypropylene (PP) to produce value-added fatty acids (FAs). PP pellets were depolymerized by pyrolysis, generating oil that consisted of mainly branched chain fatty alcohols and alkenes. The oil was mixed with biodegradable surfactants and trace nutrients and mechanically homogenized. The resulting medium, OP4, was used for fermentation by Yarrowia lipolytica strain 78-003. Y. lipolytica assimilated > 80% of the substrate over 312 h, including 86% of the fatty alcohols. Y. lipolytica produced up to 492 mg L-1 lipids, compared with 216 mg L-1 during growth in surfactant-based control medium. C 18 compounds, including oleic acid, linoleic acid, and stearic acid, were the predominant products, followed by C 16 compounds palmitic and palmitoleic acids. Two percent of the products was C 20 compounds. The majority of the products were unsaturated FAs. Growth on hydrophobic substrates (OP4 medium, hexadecane) was compared with growth on hydrophilic substrates (glucose, starch). The resulting FA profiles revealed an absence of short-chain fatty acids during growth on hydrophobic media, findings consistent with ex novo FA biosynthesis. Overall, FA profiles by Y. lipolytica during growth in OP4 medium were similar to FA profiles while growing on natural substrates. The process described here offers an alternative approach to managing postconsumer plastic waste.


Assuntos
Ácidos Graxos/biossíntese , Temperatura Alta , Polipropilenos/metabolismo , Yarrowia/metabolismo , Alcanos/metabolismo , Meios de Cultura/química , Fermentação , Glucose/metabolismo , Polimerização , Pirólise , Yarrowia/crescimento & desenvolvimento
17.
N Biotechnol ; 52: 35-41, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31026607

RESUMO

The accumulation of high amounts of petroleum-derived plastics in the environment has raised ecological and health concerns. The aim of this work was to study the biodegradative abilities of five bacterial strains, namely Pseudomonas chlororaphis, Pseudomonas citronellolis, Bacillus subtilis, Bacillus flexus and Chelatococcus daeguensis, towards polyethylene, polypropylene, polystyrene and polyvinyl chloride films under aerobic conditions. Preliminary screening resulted in the selection of P. citronellolis and B. flexus as potential PVC film degraders. Both strains were able to form a biofilm on the plastic film surface and to cause some modifications to the FTIR spectra of biomass-free PVC films. The two strains were then used to set up a PVC film biodegradation assay in 2-liter flasks. After 45 days incubation, fragmentation of the film was observed, suggesting that PVC biodegradative activity took place. Gel permeation chromatography analysis showed a reduction in average molecular weight of 10% for PVC incubated with P. citronellolis, with PVC polymer chains apparently attacked. Based on these results, the P. citronellolis strain was selected for biodegradation assays of two waste PVC films, used either nonsterile or subjected to ethanol sterilization. Chemical analyses on the incubated films confirmed the biodegradation of waste PVC plastics as shown by a gravimetric weight loss of up to about 19% after 30 days incubation. In summary, this work reports the biodegradation of PVC films by P. citronellolis and B. flexus. Both strains were shown to act mainly against PVC additives, exhibiting a low biodegradation rate of PVC polymer.


Assuntos
Bacillus/metabolismo , Cloreto de Polivinila/metabolismo , Pseudomonas/metabolismo , Bacillus/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Plâncton/citologia , Plâncton/efeitos dos fármacos , Plásticos/farmacologia , Polietileno/metabolismo , Polipropilenos/metabolismo , Poliestirenos/metabolismo , Pseudomonas/efeitos dos fármacos , Termogravimetria
18.
Biotechnol Bioeng ; 116(8): 1856-1867, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30982949

RESUMO

Accumulation of plastics in the environment became a geological indicator of the Anthropocene era. An effective reduction of long-lasting plastics requires a treatment with micro-organisms that release polymer-degrading enzymes. Polymer binding peptides function as adhesion promoters and enable a targeted binding of whole cells to polymer surfaces. An esterase A-based Escherichia coli cell surface display screening system was developed, that enabled directed evolution of polymer binding peptides for improved binding strength to polymers. The E. coli cell surface screening system facilitates an enrichment of improved binding peptides from a culture broth through immobilization of whole cells on polymer beads. The polypropylene (PP)-binding peptide liquid chromatography peak I (LCI) was simultaneously saturated at five positions (Y29, D31, G35, E42, and D45; 3.2 million variants) and screened for improved PP-binding in the presence of the anionic surfactant sodium dodecylbenzenesulfonate (LAS; 0.25 mM). The cell surface system enabled efficient screening of the generated LCI diversity (in total ~10 million clones were screened). Characterization of identified LCI binders revealed an up to 12-fold improvement (eGFP-LCI-CSD-3: E42V/D45H) in PP-binding strength in the presence of the surfactant LAS (0.125 mM). The latter represents a first whole cell display screening system to improve adhesion peptides which can be used to direct and to immobilize organisms specifically to polymer surfaces (e.g., PP) and novel applications (e.g., in targeted plastic degradation).


Assuntos
Escherichia coli/metabolismo , Peptídeos/metabolismo , Polímeros/metabolismo , Biodegradação Ambiental , Evolução Molecular Direcionada , Escherichia coli/genética , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/genética , Polipropilenos/metabolismo
19.
AAPS PharmSciTech ; 20(1): 35, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30604045

RESUMO

The main purpose of the study was to develop valsartan floating tablets (VFT) via non-effervescent technique using low density polypropylene foam powder, carbopol, and xanthan gum by direct compression. Before compression, the particulate powdered mixture was evaluated for pre-compression parameters. The prepared valsartan tablets were evaluated for post-compression parameters, swelling index, floating lag time, in vitro buoyancy studies, and in vitro and in vivo X-ray imaging studies in albino rabbits. The result of all formulations for pre- and post-compression parameters were within the limits of USP. FTIR and DSC studies revealed no interaction between the drug and polymers used. The prepared floating tablets had good swelling and floating capabilities for more than 12 h with zero floating lag time. The release of valsartan from optimized formulation NF-2 showed sustained release up to 12 h; which was found to be non-Fickian release. Moreover, the X-ray imaging of optimized formulation (NF-2) revealed that tablet was constantly floating in the stomach region of the rabbit, thereby indicating improved gastric retention time for more than 12 h. Consequently, all the findings and outcomes have showed that developed valsartan matrix tablets could be effectively used for floating drug delivery system.


Assuntos
Química Farmacêutica/métodos , Polipropilenos/síntese química , Polipropilenos/metabolismo , Valsartana/síntese química , Valsartana/metabolismo , Animais , Anti-Hipertensivos/síntese química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Liberação Controlada de Fármacos , Polipropilenos/administração & dosagem , Pós , Coelhos , Estômago/diagnóstico por imagem , Estômago/efeitos dos fármacos , Estômago/fisiologia , Comprimidos , Valsartana/administração & dosagem
20.
Biotechnol Bioeng ; 115(2): 321-330, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29064564

RESUMO

Surface functionalization of biological inert polymers (e.g., polypropylene PP; polystyrene PS) with material binding peptides facilitates an efficient immobilization of enzymes, bioactive peptides or antigens at ambient temperature in water. The developed robust directed evolution protocol enables to tailor polymer binding anchor peptides (PBPs) for efficient binding under application conditions. Key for a successful directed evolution campaign was to develop an epPCR protocol with a very high mutation frequency (60 mutations/kb) to ensure sufficient diversity in PBPs (47 aas LCI: "liquid chromatography peak I"; 44 aas TA2: "Tachystatin A2"). LCI and TA2 were genetically fused to the reporter egfp to quantify peptide binding on PP and PS by fluorescence analysis. The Peptide-Polymer evolution protocol (PePevo protocol) was validated in two directed evolution campaigns for two PBPs and polymers (LCI: PP; TA2: PS). Surfactants were used as selection pressure for improved PBP binders (non-ionic surfactant Triton X-100; 1 mM for LCI-PP // anionic surfactant LAS; 0.5 mM for TA2-PS). PePevo yielded an up to three fold improved PP-binder (LCI-M1-PP: I24T, Y29H, E42 K and LCI-M2-PP: D31V, E42G) and an up to six fold stronger PS-binder (TA2-M1-PS: R3S, L6P, V12 K, S15P, C29R, R30L, F33S, Y44H and TA2-M2-PS: F9C, C24S, G26D, S31G, C41S, Y44Q).


Assuntos
Evolução Molecular Direcionada/métodos , Peptídeos , Polipropilenos , Poliestirenos , Escherichia coli/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Polipropilenos/química , Polipropilenos/metabolismo , Poliestirenos/química , Poliestirenos/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...